Journal of Organometallic Chemistry, 433 (1992) 183–188 Elsevier Sequoia S.A., Lausanne JOM 22622

μ -Methylene rhodium complexes with SH ligand: synthesis and structures of $[Rh_2Cp_2^*(\mu-CH_2)_2(\mu-SH)]BPh_4$ and trans- $[Rh_2Cp_2^*(\mu-CH_2)_2(SH)_2](Cp^* = \eta^5-C_5Me_5)$

Yoshiki Ozawa ^a, Amelio Vázquez de Miguel ^b and Kiyoshi Isobe ^a

^a Institute for Molecular Science, Myodaiji, Okazaki 444 (Japan)

^b Departamento de Química Inorgánica, Universidad de Alcalá de Henares, 28871 Alcalá de Henares, Madrid (Spain)

(Received November 15, 1991)

Abstract

The μ -methylene rhodium complex with a hydrosulphide ligand, $[Rh_2Cp^*_2(\mu-CH_2)_2(\mu-SH)]BPh_4$ (2b), has been isolated from the reaction of *trans*- $[Rh_2Cp^*_2(\mu-CH_2)_2Cl_2](1)$ with H_2S in CH₃OH and readily converted to *trans*- $[Rh_2Cp^*_2(\mu-CH_2)_2(SH)_2](3)$ in the presence of NEt₃ and H_2S ; 2b and 3 have been characterized crystallographically.

 H_2S , SH^- and S^{2-} metal complexes have received considerable attention recently with reference to hydro-desulphurization of organosulphur compounds on the surface of transition metal sulphides [1]. In a pathway of the hydro-desulphurization, complete decomposition occurs resulting in surface sulphur, carbon and hydrocarbon fragments which contain carbyne, carbene and other hydrocarbyl species [1b,1d]. In order to understand this surface by using model compounds containing sulphur and carbene ligands, we have begun to synthesize μ -methylene rhodium complexes with sulphur ligands. Here we report the first stable μ -methylene rhodium complexes with a bridged SH ligand, [Rh₂Cp^{*}₂(μ -CH₂)₂(μ -SH)]BPh₄, and with two terminal SH ligands, *trans*-[Rh₂Cp^{*}₂(μ -CH₂)₂(SH)₂].

The reaction of $[Rh_2Cp_2^*(\mu-CH_2)_2Cl_2]$ (1) [2*] with excess H_2S gas in CHCl₃ or CH₂Cl₂ did not proceed at all, but in methanol (suspension) led to the formation of a clear solution containing the product, $[Rh_2Cp_2^*(\mu-CH_2)_2(\mu-SH)]Cl$ (2a **); the solution showed a single methyl of C_5Me_5 resonance at δ 1.937 (at 22°C) in ¹H NMR and at δ 8.27 (at 21°C) in ¹³C NMR, and a single ¹⁰³Rh resonance at δ + 315. Furthermore, the SH signal appeared at δ -1.925 in a

Correspondence to: Dr. K. Isobe, Institute for Molecular Science, Myodaiji, Okazaki 444, Japan; or Dr. A. Vázquez de Miguel, Departamento de Química Inorgánica, Universidad de Alcalá de Henares, 28871 Alcalá de Henares, Madrid, Spain.

^{*} Reference numbers with asterisk indicates a note in the list of references.

Scheme 1. Reagents and conditions: (i) H_2S , CH_3OH , 20°C; (ii) NaX (X = BPh₄, BF₄), CH_3OH , 20°C; (iii) H_2S , NEt₃, CH_3OH , 20°C; (iv) HBF₄, CH_2Cl_2 , 20°C. \land denotes the μ -CH₂ ligand.

reduced intensity owing to a H–D exchange in CD_3OD . The product 2a in the reaction system reverts easily to the starting dichloro complex on removal of the solvent. Although attempts to isolate 2a were unsuccessful, the addition of a non-nucleophilic anion, for example, BPh_4^- and BF_4^- enables isolation of 2b ** (90% yield) and 2c ** (85% yield) even in an acid media (Scheme 1). We were not able to observe formation of any H_2S complex in the system with ¹H NMR spectroscopy.

** All compounds other than 2a were isolated as analytically pure samples. The ¹H and ¹³C NMR spectra of 2a in CD₃OD are very close to those of 2c in CD₃OD (vide infra) and show temperature dependence similar to 2b and 2c (see text). Selected spectroscopic data for new compounds are as follows. Complex 2a: ¹H NMR (CD₃OD, 22°C): 8.697 (s(br), µ-CH₂, 1H); 8.377 (s(br), µ-CH₂, 1H); 8.256 (s(br), μ-CH₂, 1H); 7.902 (s(br), μ-CH₂, 1H); 1.937 (s, C₅Me₅, 30H); -1.925 (br, SH, 0.2H) ppm. ¹³C NMR (CD₃OD, 21°C): 165.94 (br, μ-CH₂); 160.31 (br, μ-CH₂); 101.38 (s, C₅Me₅); 8.27 (s, C_5Me_5) ppm. Complex 2b: IR (mineral oil): 2496 (w, ν (SH)) cm⁻¹. ¹H NMR (CD₂Cl₂, 21°C): 8.327 (s(br), μ-CH₂, 2H); 7.977 (s(br), μ-CH₂, 1H); 7.705 (s(br), μ-CH₂, 1H); 1.798 (s, C₅Me₅, 30H); -2.730 (s(br), SH, 1H) ppm. ¹³C NMR (CD₂Cl₂, 21°C): 165.82 (br, μ -CH₂); 161.69 (br, μ -CH₂); 102.43 (d, C₅Me₅, J(Rh-C) = 3 Hz); 10.10 (s, C₅Me₅) ppm. Complex 2c: IR (mineral oil): 2501 (w, ν(SH)) cm⁻¹. ¹H NMR (CD₂Cl₂, 21°C): 8.385 (s(br), μ-CH₂, 1H); 8.326 (s(br), μ-CH₂, 1H); 8.033 (s(br), μ -CH₂, 1H); 7.735 (s(br) μ -CH₂, 1H); 1.814 (s, C₅Me₅, 30H); -2.682 (s(br), SH, 1H) ppm. (CD₃OD, 22°C): 8.668 (s(br), μ-CH₂, 1H); 8.392 (s(br), μ-CH₂, 1H); 8.258 (s(br), μ-CH₂, 1H); 7.912 (s(br) μ -CH₂, 1H); 1.934 (s, C₅Me₅, 30H); -1.926 (br, SH, 0.1H) ppm. ¹³C NMR $(CD_2Cl_2, 20^{\circ}C)$: 166.15 (t(br), μ -CH₂, $J(Rh-C) \approx 10$ Hz); 161.63 (t(br), μ -CH₂, $J(Rh-C) \approx 10$ Hz); 102.42 (s, C_5Me_5); 10.04 (s, C_5Me_5) ppm. Complex 3: IR (mineral oil): 2550 (w, ν (SH)) cm⁻¹. ¹H NMR (CDCl₃, 20°C): 9.527 (t, μ -CH₂, 4H, J(Rh-H) = 1.5 Hz); 1.694 (s, C₅Me₅, 30H); -3.317 (t, SH, 2H, J(Rh-H) < 1Hz) ppm. ¹³C NMR (CDCl₃, 20°C): 172.81 (t, μ -CH₂; J(Rh-C) = 26 Hz); 102.59 (s, C₅Me₅); 10.19 (s, C₅Me₅) ppm. A mixture (1:2) of cis and trans isomer. IR (mineral oil): 2550 cm⁻¹ (w, ν(SH), trans): 2480 (w, ν(SH), cis) cm⁻¹. ¹H NMR (CDCl₃, 20°C): 9.601 (b, μ-CH₂, cis); 9.527 (t, μ -CH₂, J(Rh-H) = 1.5 Hz, trans); 9.130 (b, μ -CH₂, cis); 1.697 (s, C₅Me₅, cis); 1.694 (s, C_5Me_5 , trans); -3.320 (b, SH, trans and cis).

Fig. 1. Variable temperature ¹H NMR spectra of the μ -CH₂ protons in [Rh₂Cp^{*}₂(μ -CH₂)₂(μ -SH)]BF₄ (2c) in CDCl₃.

Compounds 2b and 2c showed the SH proton signal at δ approx. -2.7 and the characteristic signals of the CH₂ protons between δ 8.3 and 7.7 in ¹H NMR spectra in CD₂Cl₂. The four protons of the μ -CH₂ groups are in different chemical environments due to the stereochemistry of the lone pair of electrons on the S atom as shown in the molecular structure (*vide infra*). The chemical shifts vary considerably (max ≈ 0.5 ppm for the lowest peak) with solvent and counter anions. Complex 2 in solution shows fluxionality resulting from an inversion [3] at the S atom. The dynamic process sets in around -10° C, and it becomes faster around 55°C where the two highest field and the two lowest field signals owing to the CH₂ groups have coalesced into two signals (Fig. 1). The activation energy was estimated to be approx. 15 kcal/mol by means of a line shape analysis. This is the first example of an inversion process at the μ -SH ligand.

In the molecular structure of **2b** from single-crystal X-ray analysis *** each rhodium atom of the dinuclear cation is coordinated by two μ -CH₂, one μ -SH, and one Cp* ligand to give a slightly puckered Rh₂C₂ ring and has a quite short single Rh-Rh bond distance of 2.554(1) Å (Fig. 2). The two Rh-S distances 2.394(4) and 2.407(4) Å compare well with those in the two other μ -SH rhodium complexes which have been characterized by single-crystal X-ray analysis, but the intriguing structural feature of **2b** is the very small Rh-S-Rh angle (64.3(1)°) which is attributable to the short Rh-Rh distance [4]. (By comparison, [RhCl(H)(μ -SH)(PPh₃)₂]₂ [5]; Rh-S, 2.383(1), 2.385(1) Å, Rh \cdots Rh, 3.637(1),

Fig. 2. ORTEP diagram $[Rh_2Cp_2^*(\mu-CH_2)_2(\mu-SH)]^+$ in **2b** with the atom numbering scheme. Selected bond lengths (Å) and angles (°): Rh(1)-Rh(2) 2.554(1), Rh(1)-S 2.407(4), Rh(2)-S 2.394(4), Rh(1)-C(21) 2.06(1), Rh(1)-C(22) 2.04(1), Rh(2)-C(21) 2.03(1), Rh(2)-C(22) 2.06(1), Rh(1)-S-Rh(2) 64.3(1), Rh(1)-C(21)-Rh(2) 77.1(3), Rh(1)-C(22)-Rh(2) 77.1(4), C(21)-Rh(1)-C(22) 100.6(4), C(21)-Rh(2)-C(22) 101.1(4).

Rh-S-Rh, 99.43(4)°, $[(triphos)HRh(\mu-SH)]_2^{2+}$ [6]; Rh-S, 2.395(3), 2.390(3) Å, Rh · · · Rh, 3.617(2), Rh-S-Rh, 98.2(2)°).

The μ -SH complex 2 reacts with more H₂S gas in the presence of Et₃N to yield trans-[Rh₂Cp^{*}₂(μ -CH₂)₂(SH)₂] (3 **) at 25°C. At -20°C a mixture of *cis* and trans isomer (1:2 molar ratio) ** was isolated, but the *cis* isomer changed quickly to the trans isomer in CH₂Cl₂ upon raising the temperature to 25°C. The formation of the dihydrosulphido complex 3 needs more basic reaction conditions than that of 2. The SH proton signal of the trans isomer 3 resonates at δ -3.317 (t, J(Rh-H) < 1 Hz) and the CH₂ protons at δ 9.527 (t, J(Rh-H) = 1.5 Hz). X-Ray structure analysis of 3 confirmed a trans configuration and all hydrogen atoms were located and refined (Fig. 3). The Rh₂C₂ ring is planar and the two Rh-S bonds lie almost perpendicular to the plane in a trans position with each other. The Rh-S bond length (2.3591(8) Å [7*] is slightly shorter but the Rh-Rh bond is longer (2.6487(3) Å) than those of 2b, separately. The trans isomer 3 reacted with HBF₄ to lose 1 mol of H₂S and transformed quantitatively into 2c.

^{***} Crystal data for complex 2b: $C_{46}H_{55}BRh_2S$, M = 856.62, monoclinic, space group $P2_1/c$, a = 12.835(3) Å, b = 17.960(5) Å, c = 18.343(9) Å, $\beta = 93.83(6)^\circ$, Z = 4, V = 4129(6) Å³, $D_x = 1.35$ g cm⁻³, μ (Mo- K_{α}) = 8.47 cm⁻¹, F(000) = 1768. Intensity data were collected on an Enraf-Nonius CAD4 diffractometer with graphite-monochromated Mo- K_{α} radiation $\lambda = 0.71073$ in $2\theta \le 55^\circ$ range. The structure was solved and refined by a block-diagonal least-squares technique. The current R value is 0.052 ($R_w = 0.075$) for 3790 independent absorption-corrected reflections. Complex 3: $C_{22}H_{36}Rh_2S_2$, M = 570.46, monoclinic, space group $P2_1/c$ (no. 14), a = 10.147(1) Å, b = 14.899(1) Å, c = 8.011(1) Å, $\beta = 107.39(1)^\circ$, Z = 2, V = 1155.8(2) Å³, $D_x = 1.639$ g cm⁻³, μ (Mo- K_{α}) = 15.850 cm⁻¹, F(000) = 580. Intensity data were collected ($2\theta \le 60^\circ$ range) and the structure was solved by the similar method as mentioned above. All hydrogen atoms, including those in the SH ligands, were found on a difference map and refined. The final R value is 0.022 ($R_w = 0.029$) for 2775 independent absorption-corrected reflections.

Fig. 3. ORTEP diagram for trans- $[Rh_2Cp_2(\mu-CH_2)_2(SH)_2]$ (3) with the atom numbering scheme. Selected bond lengths (Å) and angles (°): Rh-Rh' 2.6487(3), Rh-S 2.3591(8), Rh-C(11) 2.039(2), Rh-C(11)' 2.032(3), S-Rh-Rh' 90.28(2), C(11)-Rh-C(11)' 98.82(9), Rh-C(11)-Rh' 81.18(8), Rh-S-H(S) 91(2). (Primed atoms have equivalent coordinates -x, -y, -z.)

In connection with the hydrodesulphurization on the metal surfaces, we are now studying the oxidation and decomposition of 2 and 3 to see what transformation of the μ -CH₂ and SH ligands takes place.

Acknowledgments

We thank Professor P.M. Maitlis of the University of Sheffield for valuable discussions and the kind editing of this manuscript. We gladly acknowledge the awards of a JSPS fellowship (1990) and an IMS fellowship (1989) to A.V.M. This work was supported in part by Grant-in-Aid for Scientific Research No. 01300011 from the Ministry of Education, Science, and Culture of Japan.

References

- (a) R.J. Angelici, Acc. Chem. Res., 21 (1988) 387; (b) C.M. Friend and J.T. Roberts, Acc. Chem. Res., 21 (1988) 394; (c) M.R. DuBois, Chem. Rev., 89 (1989) 1; (d) M.J. Calhorda, R. Hoffman and C.M. Friend, J. Am. Chem. Soc., 122 (1990) 50; (e) J. Amarasekera and T.B. Rauchfuss, Inorg. Chem., 28 (1989) 3875; (f) R.J. Angelici and R.G.W. Gingerich, Organometallics, 2 (1983) 89.
- 2 K. Isobe, S. Okeya, N.J. Meanwell, A.J. Smith, H. Adams and P.M. Maitlis, J. Chem. Soc., Dalton Trans., (1984) 1215. The chemistry of the μ -CH₂ rhodium chloride complexes has been developed by P.M. Maitlis and co-workers. See a recent paper, for example: J. Martinez, H. Adams, N.A. Bailey and P.M. Maitlis, J. Organomet. Chem., 405 (1991) 393, and refs. therein.
- 3 E.W. Abel, S.K. Bhargava and K.G. Orrell, in S.J. Lippard (Ed.), Progress in Inorganic Chemistry, Vol. 32, Wiley, New York, 1984, pp. 1-118.
- 4 Z. Hou, Y. Ozawa and K. Isobe, Chem. Lett., (1990) 1863; F.A. Cotton and D.A. Ucko, Inorg. Chim. Acta, 6 (1972) 161.

- 5 A.M. Mueting, P. Boyle and L.H. Pignolet, Inorg. Chem., 23 (1984) 44.
- 6 C. Bianchini, C. Mealli, A. Meli and M. Sabat, Inorg. Chem., 25 (1986) 4618.
- 7 trans-[Rh(SH)(CO)(PPh₃)₂] is the only example of the terminal SH rhodium complex which has been characterized by single-crystal X-ray analysis; T.R. Gaffney and J.A. Ibers, Inorg. Chem., 21 (1982) 2857. It has the long Rh-S bond (2.418(3) Å) which reflects the *trans* influence of the carbonyl group on the SH ligand.